
Out-of-Sample Extrapolation of
Learned Manifolds

Tat-Jun Chin and David Suter, Senior Member, IEEE

Abstract—We investigate the problem of extrapolating the embedding of a manifold learned from finite samples to novel out-of-

sample data. We concentrate on the manifold learning method called Maximum Variance Unfolding (MVU), for which the extrapolation

problem is still largely unsolved. Taking the perspective of MVU learning being equivalent to Kernel Principal Component Analysis

(KPCA), our problem reduces to extending a kernel matrix generated from an unknown kernel function to novel points. Leveraging on

previous developments, we propose a novel solution, which involves approximating the kernel eigenfunction by using Gaussian basis

functions. We also show how the width of the Gaussian can be tuned to achieve extrapolation. Experimental results, which

demonstrate the effectiveness of the proposed approach, are also included.

Index Terms—Manifold learning, out-of-sample extrapolation, Maximum Variance Unfolding.

Ç

1 INTRODUCTION

GIVEN a finite set of input data densely sampled from a
smooth manifold in the input space, manifold learning

methods seek the embedding of the data in a lower
dimensional space in a manner that preserves the structure
of the underlying manifold. Manifold learning has been
attracting enormous attention as a promising alternative
dimensionality reduction method, particularly in the field of
computer vision where it has been realized that linear
methods such as Principal Component Analysis (PCA) are
unsuitable for analyzing complex nonlinear distributions of
images. For a recent survey of manifold learning methods,
refer to [1] and [2].

In this paper, we address the issue of extrapolating
learned manifolds to out-of-sample data; that is, given a
previously unseen point, what is the corresponding
embedding of the point on the learned manifold? Realis-
tically, we cannot only consider novel points, which are
confined to be located within the empirically learned
manifold. We must also consider extrapolating slightly
off-manifold points, which arise due to perturbations
caused by noise in the data acquisition or input preproces-
sing stages. Here, we concentrate on the manifold learning
method called Maximum Variance Unfolding (MVU) [3], also
known as Semi-Definite Embedding (SDE), for which the
extrapolation problem is still largely unsolved [3]. MVU
belongs to a class of methods called spectral embedding
methods, where the embedding coordinates are derived
from the top or bottom eigenvectors of specially con-
structed matrices [2].

1.1 Previous Work

Bengio et al. [4], [5] showed that there is a direct relation

between spectral embedding methods and Kernel PCA

(KPCA) [6] and how both are special cases of learning the

principal eigenfunctions of an operator defined from a

kernel and the unknown data generating density. For the

spectral embedding methods of Locally Linear Embedding

(LLE), Laplacian Eigenmaps, and Isomap (all described in

[2]), Bengio et al. [4], [5] defined data-dependent kernels that

can be applied outside the training set for extrapolation.

The data-dependent kernels can implicitly be defined by

the specific spectral embedding algorithms. This gener-

alizes methods such as Landmark Isomap [7]. Landmark

Isomap performs Isomap on a subset of the training points

(landmarks) and predicts the embedding of the other points

by using a data-dependent kernel, thus achieving extra-

polation for Isomap.1 However, for MVU, it is unclear how a

data-dependent kernel can be constructed, since semidefi-

nite programming is conducted to optimize the kernel

matrix to learn the embedding. The algebraic form of the

data-dependent kernel is unknown.
A recent work [9] examined the more general problem of

extending a kernel matrix generated from an unknown

kernel function to novel points. Among other contributions,
a framework was proposed for the extrapolation of LLE to
unseen data. Integral to their solution is a matrix approx-

imation theorem, which determines the solution to the
problem (see Lemma 1 in [9]):

arg min
Q�0

kK�KQkp: ð1Þ

The symbol Q � 0 means that Q is positive semidefinite,

and k � kp is the matrix p-norm (their solution is independent
of p). Here, K is the kernel matrix for which a kernel

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 9, SEPTEMBER 2008 1547

. T.-J. Chin is with the Institute for Infocomm Research, Agency for Science,
Technology, and Research, 21 Heng Mui Keng Terrace, Singapore 119613.
E-mail: tjchin@i2r.a-star.edu.sg.

. D. Suter is with the Department of Electrical and Computer Systems
Engineering, Monash University, Clayton, Victoria 3168, Australia.
E-mail: d.suter@eng.monash.edu.au.

Manuscript received 7 Nov. 2006; revised 23 Apr. 2007; accepted 25 Sept.
2007; published online 12 Oct. 2007.
Recommended for acceptance by Z. Ghahramani.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-0790-1106.
Digital Object Identifier no. 10.1109/TPAMI.2007.70813.

1. Despite similar naming, Landmark SDE/MVU [8] does not provide
extrapolation for MVU. Rather, it aims at reducing the training time of
MVU only.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

function is sought, whereas KQ is the kernel matrix from a
kernel function of the following form:

kQðx; zÞ ¼ �ðxÞTQ�ðzÞ; ð2Þ

where � : IRm�!IRn is an intermediate feature map from
the input space IRm to the feature space IRn. Note that the
eventual mapping of IRm is to an RKHS FF induced by the
kernel function kQð�; �Þ. For the case of LLE, it is shown in
[9] how the kernel matrix K and intermediate mapping
�ðxÞ can be defined by the LLE algorithm, after which the
optimal matrix Q can be computed so that kQð�; �Þ can freely
be applied on novel data. In the case of MVU, since K is
obtained via a semidefinite optimization, it is unclear what
form � must take before a Q can be determined.

A class of general solution would be to learn a mapping
either directly, for example, [10] uses a neural network, or by
attempting to invert a learned mapping from embedding to
the input space, for example, [11], which claims to invert a
Generalized Radial Basis Function (GRBF) mapping. The first
approach is problematic in that it is a large learning exercise
and, if conducted using MLPs (as in [10]), can consume huge
computational resources. Even worse, it is difficult to decide
the number of hidden units. This is especially true for high-
dimensional inputs. Note that cross validation is infeasible,
since, given one network setting, the training effort is
prohibitively expensive (see Section 3). The second approach
is problematic, because it really requires the solution of a set
of nonlinear equations (see [11]). Although Gong et al. [10]
introduce a “linear approximation” solution, they provide no
justification or guarantee that this is a good approximation.
Indeed, our results in Section 3 seem to show that it is not, in
general, a good approximation.

There also exists a simple nonparametric approach that
was proposed in [12] for the extrapolation of LLE. This could
potentially be applied in any manifold learning methods,
which involve preserving local geometry as an objective. For
a novel point, the method in [12] first computes its linear
reconstruction weights from its neighbors. The extrapolation
coordinates are then obtained by constructing a new point in
the embedding space using the embedded coordinates of the
neighbors according to the same weight coefficients. How-
ever, as pointed out in [12], a nonparametric mapping can
discontinuously change as query points move between
different neighborhoods. Furthermore, for novel points that
are off manifold, the locally linear condition is not satisfied
anymore; hence, it is uncertain how a nonparametric
mapping would behave in such conditions. Based on a
completely different idea, our method uses a set of basis
functions, which are centered at the training data to
approximate the underlying eigenfunction. Although this is
also nonparametric, by controlling the width of the basis
functions, we can achieve a degree of smoothing to prevent
discontinuous mappings. Furthermore, our method is in-
tentionally designed to handle off-manifold points by
optimizing the basis function parameters.

1.2 Contributions

We propose a method that allows the extrapolation of
manifolds learned via MVU to novel out-of-sample points.
To the best of our knowledge, this has not been attempted
before. We also provide experimental results, which show
the effectiveness of our solution.

2 EXTRAPOLATION OF LEARNED MANIFOLDS

We set the background by briefly describing MVU [3], [2]
and the Nyström formula [13], [14] for out-of-sample

extrapolation [4], [5]. First, we define some commonly
used symbols. The set of training vectors is given by

XX ¼ fx1; � � � ;xng 2 IRm, and manifold learning computes
the corresponding embedding EE ¼ fe1; � � � ; eng 2 IRr such

that the manifold structure sampled by XX is preserved.
Typically, r� m, and the value of r reflects the intrinsic
dimensionality of the underlying manifold. For spectral

embedding methods, EE is obtained from the top or
bottom eigenvectors of specially constructed matrices

represented by K in this paper.

2.1 Maximum Variance Unfolding

Given XX , the underlying principle of MVU is to “unfold”

the data set by pulling the vectors as far apart as possible
while observing local distance and angle constraints so
that the eventual transformation from input vectors

fx1; � � � ;xng to output vectors f 1; � � � ; ng locally looks
like a rotation plus translation [2]. If MVU is interpreted

from the KPCA perspective, then the f 1; � � � ; ng inhabit
an RKHS induced by a kernel function kð�; �Þ. The Gram

matrix ~K of f 1; � � � ; ng is the kernel matrix associated
with kð�; �Þ, where ~Kij ¼ i � j ¼ kðxxi; xxjÞ. Let K be the

normalized (or centered) version of ~K. This means that
each entry of K contains the dot-product between the

centered output vectors in a kernel-induced RKHS, that
is, Kij ¼ � i � � j, where � i ¼ i � 1

n

Pn
k¼1 k. The eigenvec-

tors of K also provide the desired embedding EE ¼
fe1; � � � ; eng of XX ¼ fx1; � � � ;xng. MVU uses numerical
semidefinite programming (optimization over positive

semidefinite matrices) to directly find the best K. Thus,
we do not have the actual algebraic form of the

underlying kernel function kðxi;xjÞ ¼ ~Kij.

2.2 The Nyström Formula for Out-of-Sample
Extrapolation

Spectral embedding methods will eventually arrive at a
matrix K (not necessarily positive semidefinite), for which

the eigenvectors provide the desired embedding. For LLE,
Isomap, and Laplacian Eigenmap, K is constructed accord-

ing to their specific algorithmic procedures that take the
training data into account. Bengio et al. [5] showed that for

each of these methods, a data-dependent kernel functionknð�; �Þ
can algebraically be formulated, that is, Kij ¼ knðxi;xjÞ. Note

that knðxi;xjÞ depends not only on xi and xj, but also on the
whole training set XX . It is emphasized that for spectral
embedding methods, K is the normalized version of an

underlying kernel matrix ~K. Equivalently, knð�; �Þ is the
normalized version of the underlying kernel function kð�; �Þ,
which gives rise to ~K, that is, ~Kij ¼ kðxi;xjÞ. Let ��ip be the
ith coordinate of the pth eigenvector of K with eigenvalue lp.

Given that the form of the data-dependent kernel function
knð�; �Þ is known, the Nyström formula [5], [14] is evaluated as

fp;nðxÞ ¼
1

lp

Xn

i¼1

��ipknðx;xiÞ; ð3Þ

1548 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 9, SEPTEMBER 2008

where fp;n is the Nyström estimator for the pth eigenvector of
K with n samples. Note the similarity with the KPCA
projection formula [6]. Bengio et al. [5] also showed that fp;n
estimates the pth eigenfunction of a linear operator defined
using the true underlying data distribution. This formula was
used to estimate extensions of eigenvectors in Gaussian
Process regression [15] and to speed up kernel machines [14].
In the manifold learning context, fp;nðxÞ predicts the (scaled)
embedding of a new point x; that is, the extrapolation of x for
the pth embedding coordinate is simply the extension of the
pth eigenvector for new data x of the normalized kernel
matrix K. Results in [4] and [5] demonstrated the accuracy for
LLE and Isomap extrapolation.

2.3 Out-of-Sample Extrapolation for Maximum
Variance Unfolding

For MVU, however, K is obtained through semidefinite
programming. Using the Nyström formula for out-of-
sample extrapolation is problematic, since it is unknown
how we should define a knð�; �Þ that is suitable to MVU. To
this end, we approximate the kernel eigenfunction fp;nðxÞ
with basis functions rð�; �Þ, as done in [15] to generalize
Gaussian Process covariance matrices learned via Expecta-
tion-Maximization to novel inputs. Via the Nyström
formula, the approximate pth scaled eigenfunction of K by
using the basis functions is

fp;nðxÞ ¼
Xn

i¼1

bpirðx;xiÞ; ð4Þ

with weights bp ¼ ½bp1; � � � ; bpn�T ¼ ðRþ �IÞ�1��p, where ��p is
the pth eigenvector of K. Matrix R indicates the Gram matrix
for rð�; �Þ on all the training vectors, and the regularization
term �I is included to stabilize its inverse. The corresponding
approximate data-dependent kernel function [15] to substitute
for the unknown underlying knð�; �Þ is

~knðx; zÞ ¼
Xr

p¼1

lpfp;nðxÞfp;nðzÞ

¼ rðxÞT ðRþ �IÞ�1KðRþ �IÞ�1rðzÞ;
ð5Þ

with rðxÞ ¼ ½rðx1;xÞ; � � � ; rðxn;xÞ�T . One can easily see that
if � is sufficiently small, the resulting kernel matrix from
evaluating ~knð�; �Þ on the training set is equal to K (under
the assumption that the ðrþ 1Þth and above eigenvalues of
K are numerically insignificant).

Recall that for MVU [8], [3], the pth embedding
coordinate of the ith training point xi is obtained asffiffiffiffi
lp

p
��ip. Therefore, (4) must be rescaled by a factor of

ffiffiffiffi
lp

p
as

well for the result to function correctly as the MVU
extrapolation of the pth embedding coordinate for a new
point x. In addition, from the viewpoint of KPCA, we can
project x onto the pth kernel principal component of XX with
kernel matrix K as

wp;nðxÞ ¼
1ffiffiffiffi
lp

p
Xn

i¼1

��ip ~knðx;xiÞ ¼ PprðxÞ; ð6Þ

where vector Pp :¼ l�
1
2

p ��Tp RðRþ �IÞ�1KðRþ �IÞ�1. Note

that wp;nðxÞ is equal to
ffiffiffiffi
lp

p
fp;nðxÞ, which is precisely what

we require for MVU extrapolation. This arises due to the

equivalence of the Nyström formula to the KPCA projec-

tion formula, as observed previously in [4], [5], and [14].
To ensure that new points are centered with regard to

the mean of the training data when being subjected to the
approximate data-dependent kernel ~knð�; �Þ, we normalize
rð�; �Þ to its data-dependent form before plugging it into
~knð�; �Þ:

rnðx; zÞ ¼ rðx; zÞ � Ex0 ½rðx0; zÞ� � Ez0 ½rðx; z0Þ�
þ Ex0 ½Ez0 ½rðx0; z0Þ��;

ð7Þ

where Ex½fðxÞ� represents the expected value of fðxÞ taken
over the underlying distribution density of the training
data. By introducing this data dependency in ~knð�; �Þ of (6),
we perform a data-centering step that is analogous to the
one used in KPCA before projecting a new test point. The
expectation Ex½fðxÞ� is approximated by averaging over the
empirical distribution:

Ex½fðxÞ� ¼
1

n

Xn

i¼1

fðxiÞ: ð8Þ

Equations (4), (5), and (6) are accordingly modified by
substituting rð�; �Þ with rnð�; �Þ and computing Rij ¼ rn
ðxi;xjÞ. What is left is determining the form of rð�; �Þ and its
parameters, as well as the appropriate value of�. We propose
using the Gaussian basis function

rðx; zÞ ¼ expð�kx� zk2=�Þ; ð9Þ

for defining ~knð�; �Þ. This choice is motivated by the good
results that we have obtained for the manifold extrapola-
tion in Section 3. To select the optimal values of � and � for
a particular learned manifold with centered kernel matrix
K, we tune ~knð�; �Þ by using a set of artificially generated on-
manifold and off-manifold points with their corresponding
embedding.

2.3.1 Generating On-Manifold and Off-Manifold Tuning

Samples

To generate novel on-manifold samples, we apply the
method in [11]. GRBF networks are fitted on fe1; � � � ; eng to
create a mapping fGRBF from the embedding space IRr to
the input space IRm. We interpolate within fe1; � � � ; eng by
finding midpoints between t pairs of points (either
randomly chosen or using nearest neighbor pairs only) to
obtain t new coordinates feon1 ; � � � ; eont g. These are then
mapped to the input space to obtain fxon1 ; � � � ;xont g, that is,
xoni ¼ fGRBF ðeoni Þ. Provided that the GRBF networks are
properly fitted with the right parameters (for example, the
number of centroids, type of basic function, and associated
parameters), fGRBF is capable of producing very accurate
on-manifold samples. This is illustrated in Section 3. Refer
to [11] for details on fitting GRBF networks on the
embedding.

For off-manifold samples, we locally apply standard

PCA in the training set. The intrinsic dimensionality r of the

underlying manifold has been recovered from MVU. For

each xi, a local patch of k-nearest neighbors (k-NN’s; we set

k ¼ 20) is computed, and with these, a PCA is conducted,

with xi being the origin. The off-manifold sample xoffi is

CHIN AND SUTER: OUT-OF-SAMPLE EXTRAPOLATION OF LEARNED MANIFOLDS 1549

obtained by biasing xi slightly away from the manifold

along the direction of the ðrþ 1Þth principal component.

During tuning, we require that the embedding of xoffi be

extrapolated close to, if not exactly as, ei. With this, we

obtain the off-manifold points fxoff1 ; � � � ;xof !f
n g with their

corresponding embedding feoff1 ; � � � ; eoffn g ¼ fe1; � � � ; eng.
The focus here is on learning a robust extrapolation

function, which can deal with noisy data within close

proximity of the learned manifold. Hence, the direction of

bias for xoffi does not need to exactly be orthogonal to the

manifold surface at xi.

2.3.2 Tuning a Data-Dependent Kernel Function

Let XX tune ¼ fxon1 ; � � � ;xont g
S
fxoff1 ; � � � ;xoffn g contain the gen-

erated on-manifold and off-manifold samples with their
ground truth embedding EEtune ¼ feon1 ; � � � ; eont g

S
feoff1 ;

� � � ; eoffn g. To obtain the optimal parameters of our approx-
imate data-dependent kernel ~knð�; �Þ, we solve the problem as
follows:

f��; ��g ¼ arg min
�;�

1

tþ n
Xtþn

i¼1

P1:rrnðsiÞ � ��ik k2; ð10Þ

where si 2 XX tune, ��i 2 EEtune, P1:r :¼ P1
T � � �Pr

T
� �T

, and
rnðxÞ :¼ ½rnðx1;xÞ; � � � ; rnðxn;xÞ�T . See (6). Note that P1:r is
constructed using the data-dependent form of rð�; �Þ. Multi-
plying P1:r with rnðsiÞ simply returns the r-dimensional
embedding of si on the manifold that was learned from XX
by using MVU. To solve (10) in our experiments, we fix � to
a small value (0.01) and optimize over �. We resorted to
hand-tuning (10) to achieve this goal. This approach is
practically tractable, since there is only one parameter.

2.3.3 Computational Complexity

We focus on the extrapolation step P1:rrnðsiÞ as this is
sufficient to give us a picture on the effort required to solve
(10); that is, at each tuning iteration, the overall effort is just
the accumulation of tþ n times of P1:rrnðsiÞ and also of
computing, squaring, and summing up the residuals. Since
� is fixed and P1:r is independent of si, at each tuning
iteration (that is, for a fixed �), matrix P1:r can be computed
once, cached, and reused for all si’s. Hence, the effort
required to produce P1:r can be ignored. Similarly, the third
and fourth terms on the right-hand side of (7) are
independent of si, that is, variable z in (7). Thus, at each
tuning iteration, the corresponding terms in rnðsiÞ can be
stored and reused for all si’s. Since we are interested in the
complexity of (10) with regard to the number of training
data n only and evaluating function rð�; �Þ scales according
only to the length of the input vector, we denote by cr the
computational effort required to evaluate the function rð�; �Þ
once. Given n training vectors, evaluating rnðsiÞ once will
incur n � cr þ 4n computations,2 which is accumulated from
the following procedures:

1. n evaluations of rðxj; siÞ, where xj 2 X, and
1 � j � n. Each rðxj; siÞ are then cached.

2. ðn� 1Þ additions and one division to produce
1
n

Pn
j¼1 rðxj; siÞ as the second term in (7) with

reference to (8). This value is also cached.
3. For each of the n entries in rnðsiÞ ¼ ½rnðx1; siÞ;
� � � ; rnðxn; siÞ�T , only two subtractions and one addi-
tion are needed, since all terms of (7) (including the
third and fourth, as mentioned before) were cached
from previous computations.

Multiplying P1:r with rnðsiÞ will cost rð2n� 1Þ computa-

tions. This gives an overall computational effort of

nðcr þ 2rþ 4Þ � r, thus evaluating that P1:rrnðsiÞ scales

with OðnÞ.

3 EXPERIMENTAL RESULTS

3.1 Synthetic Data

We first consider the synthetic Swiss-roll data set. This refers

to a set of vectors uniformly sampled from a 2D manifold in

the shape of a Swiss roll in 3D space. Data sets with different

numbers of samples, that is, 500; 600; � � � ; 1; 700½ �, were

generated3 and fed to the MVU algorithm by using 6-

neighborhood [3]. MVU returned a 2D embedding for each

data set (see Fig. 1a).
We applied four methods to produce a function for

manifold extrapolation: the proposed method, inverse

GRBF [11], MLP [10], and the k-NN reconstruction method

proposed for LLE in [12]. For each Swiss-roll embedding,

the following steps were performed to train the first three

methods (the k-NN method does not require training):

1550 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 9, SEPTEMBER 2008

Fig. 1. (a) An 800-point Swiss-roll data set with its MVU embedding.
(b) A bounding box, which encapsulates the embedding coordinate
range, and novel randomly interpolated points (in various colors) are
accurately mapped via GRBF onto the Swiss-roll manifold in the input
space. Note that (b) does not involve the training points or their
embedding coordinates at all.

2. We regard the basic arithmetic operations of addition, subtraction,
multiplication, and division to consume the same amount of computational
effort.

3. Using the code available at http://www.cs.utoronto.ca/~roweis/lle/
code/swissroll.m.

1. Fit GRBF networks on the embedding and randomly
generate n on-manifold tuning samples within the
embedding, where n is the number of training
points.

2. Generate off-manifold tuning samples by biasing
each training point 1 unit distance away from the
manifold along the normal (both directions) of the
local hyperplane.

3. Tune a data-dependent kernel function by using the
tuning samples, that is, solve (10).

4. Find the inverse of the GRBF networks obtained in
step 1 according to [11].

5. Train an MLP network according to [10] by using
the training samples as inputs and the embedding as
targets. The tuning samples obtained in steps 1 and
2 are used as a validation set. Training is performed
until the validation error is equal to the minimum
error in step 3 or a maximum number of epochs
(200) is achieved. We set the number of neurons in
the hidden layer to n to make MLP more compar-
able to the proposed method, where there are n
Gaussian basis functions centered at the training
data.

Fig. 1b illustrates the GRBF mapping, which appears to

perform well, since embedding interpolations are mapped

to correct locations in the input space. Fig. 2a shows the

tuning curve of the data-dependent kernel for the 800-point

data set. The curve appears to be convex, thus guaranteeing

that consistent solutions can be achieved.
Figs. 3a and 3b illustrate the training progress of the MLP

networks. It is evident that arbitrarily, small validation errors

cannot be achieved within an appreciably small number of

epochs, since after about 100 epochs, the validation errors

simply remain roughly constant. Furthermore, these constant

validation errors are much larger than the error at the

solution point of (10) (both methods minimize the same

objective function). However, it can be seen that errors from

the training set monotonically decrease until they are almost

zero, indicating that the MLP training was correctly

performed. Fig. 3c illustrates a comparison of training times
between optimizing (10) and updating weights of MLP
networks. The long training time of MLPs renders perform-
ing cross validation to select the optimal number of hidden-
layer neurons unattractive compared to our method, which
requires only one instance of solving (10).

For each Swiss-roll data set, in the same process of
generating the n training points XX 2 IR3, 500 testing points
YY 2 IR3 were created. Note that the testing points should not
be confused with the tuning samples generated from XX to
tune a data-dependent kernel. The tuning samples were
created using the methods described in Section 2.3.1, whereas

CHIN AND SUTER: OUT-OF-SAMPLE EXTRAPOLATION OF LEARNED MANIFOLDS 1551

Fig. 2. Tuning data-dependent kernels. In all cases, � is fixed to 0.01.

For (a), the curve for the 800-sample data set is shown. Note that for all

data sets, the error plotted is given by (10). (a) Swiss-roll data set.
(b) Teapots data set. (c) Face data set. (d) Soft-toy data set.

Fig. 3. (a) and (b) MLP training profile for two Swiss-roll data sets. Similar
curves were obtained for the other data sets of different sizes. (c) To
produce an objective comparison of the training times, Matlab’sfminunc
function was used to solve (10). The MLP network weights were updated
using the Scaled Conjugate Gradient (SCG) algorithm, as done in [10].
We used Netlab’s [16] SCG implementation. In our experiments, manual
tuning of (10) is generally much faster than fminunc. Terminating the
MLP optimization earlier (say, at the 100th epoch when the validation
error persists roughly at the same level) will halve the training time, but
this would require the crafting of a more sophisticated stopping criterion
for SCG. (a) 500 training points. (b) 1000 training points. (c) Comparison
of training times.

the testing points were directly obtained from the Swiss-roll
generation process. The ground truth embedding coordi-
nates ofXX andYY, respectively, TT 2 IR2 andUU 2 IR2 were also
obtained.4 From XX , MVU returns an embedding EE 2 IR2.
Although EE resembles TT , they are not exactly the same, since
manifold learning, in general, is not perfect. The differences
between EE and TT contribute to the intrinsic perturbation of the
embedding EE, which can be quantified using the MSE as

REE ¼
1

n

Xn

i¼1

kei � tik2
2; ð11Þ

where ei 2 EE and ti 2 TT are corresponding points on the
manifold.5 Equation (11) provides a lower bound of error
for any extrapolation method, since it captures how well
MVU really captures the true embedding space. Note that
the manifold extrapolation methods were based on learning
a mapping from the corresponding points between XX and
EE, not XX and TT .

Let the testing set YY be extrapolated (using the four
compared methods separately) to produce a set of embed-
ding coordinates denoted by FF . To compare the efficacy of
different extrapolation methods, we applied the MSE as an
error metric to quantify the extrapolation error of a
particular method:

RFF ¼
1

m

Xm

i¼1

kf i � uik2
2; ð12Þ

where f i 2 FF and ui 2 UU are corresponding points on the
manifold, and m ¼ 500 is the number of testing points. For
the proposed method, the testing set is simply used as an
input to (6) with the optimized Gaussian widths, whereas
for GRBF [11] and MLP [10], the testing set is evaluated
using, respectively, the inverse GRBF networks and the
trained MLP networks. For the k-NN method, the following
steps, as described in [12, Section 6.1], are carried out for
each vector yi 2 YY:

1. Identify the k-NN’s of yi among the training set XX .
2. Compute the linear weights wj that best reconstruct

y from the k-NN’s, subject to the sum-to-one
constraint

Pk
j¼1 wj ¼ 1.

3. Output f i ¼
Pk

j¼1 wjej, where ej are the embedding
coordinates of the k-NN’s produced from manifold
learning.

In our evaluation, k is set to 6 for the k-NN method (that is,
the same number of neighbors used during manifold
learning).

Fig. 4a illustrates the results, in terms of the extrapola-
tion error of YY given by (12), of the four methods on the
Swiss-roll data sets. It is evident that inverse GRBF and

MLP perform very poorly, relative to the intrinsic pertur-
bation, whereas k-NN and the proposed method produced
much better results. The results also show that the
proposed method does not perform as well as k-NN for
smaller data sets (500 to 800 points), but eventually, very
similar levels of extrapolation accuracy are achieved for
both methods on subsequently larger data sets. This
suggests that the performance of the proposed method
improves with higher sampling resolutions of the under-
lying manifold. Indeed, Bengio et al. [5] prove that in the
limit, the Nyström estimator (upon which the proposed
method is based) converges to the true underlying
eigenfunction of the data distribution. On the other hand,
the k-NN method, which is based on the notion of locally
linear neighborhood structures, seems to be less affected by
sampling resolution.

To investigate the competency in extrapolating slightly
off-manifold points, the testing set YY of each Swiss-roll
data set is biased along the surface normal of the
manifold to produce a new testing set YYoff . The amount
of bias is the average nearest neighbor distance of the
training data. By using UU as the ground truth of YYoff , the
extrapolation error given by (12) is recomputed. The
results in Fig. 4b depict that for sufficiently large training
sets, the proposed method consistently outperforms

1552 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 9, SEPTEMBER 2008

Fig. 4. Comparing the efficacy of different extrapolation methods on the

Swiss-roll data sets. Note that the error is in log scale. (a) With test

points YY (on manifold). (b) With test points YYoff (off manifold).

4. The actual process is first defines a set of 2D coordinates confined
within a rectangle, respectively, TT and UU, which are then “rolled” to create
a Swiss-roll manifold XX and YY.

5. Note that aside from imperfect manifold learning, EE and TT can differ
due to scale, rotational, and translational differences, since the objective of
MVU is only to maximize the output variance while preserving local
geometry. Equation (11) is computed after accounting for scaling, rotation,
and translation by first mapping EE to TT with an affine transformation
estimated using least squares. Equation (12) is also computed after mapping
FF by using the mapping estimated from EE and TT (not from FF and UU!).

k-NN. This is not surprising, since the proposed method

was optimized to handle slightly off-manifold points, for

which the local neighborhood structure in the input space

is not preserved in the embedding space, thus (slightly)

violating the locally linear condition on which the k-NN

method operates.

3.2 Image Data

We also considered three data sets of images: 1) the teapots

data set [3], which contains 400 images (101 	 76) of a

teapot in full rotation, 2) a set of 831 face images (50 	 60),

where the subject incrementally varied his headpose

without translational movement6 (the “face” data set),

and 3) a set of 2,500 images (64 	 64) densely sampled from

a view hemisphere of a soft toy [17] (the “soft-toy” data set).

These were processed as follows for training and testing:

1. Since the teapots and face data sets are much
smaller, instead of partitioning to create disjointed
training and testing sets, all images were used for
training. This is to ensure that we have a set of dense
samples of the underlying manifold for training. The
testing images were obtained by corrupting all the
training images with random noise.

2. For the soft-toy data set, each image is pretagged
with longitudinal and latitudinal values, respec-
tively, in the range ½0; 1; � � � ; 99� and ½0; 1; � � � ; 24�. We
chose images with longitudes and latitudes, respec-
tively, of ½0; 2; � � � ; 98� and ½0; 2; � � � ; 24� as training
images (a total of 650), whereas the rest was
designated as testing images (a total of 1,850), which
were also blurred by convolving them with a
Gaussian filter.

For the training sets created, MVU with 6-neighborhood
returned the following results:

1. For the teapots data set, a 2D embedding, with the
points forming a connected circle (the intrinsic
manifold dimensionality is 1; see Fig. 5a).

2. For the face data set, a 2D embedding, with each
dimension corresponding roughly to the tilt and
yawn movement of the head (see Fig. 6a).

3. For the soft-toy data set, a 3D embedding, with the
points forming a cylindrical structure (the intrinsic
manifold dimensionality is 2; see Fig. 6b).

For each embedding, we tuned a data-dependent kernel

function for manifold extrapolation and compared it
against inverse GRBF [11], MLP [10], and the k-NN method
[12] (with k ¼ 6). Linear PCA, with the eigenspace
dimensionality being equal to the MVU embedding

dimensionality, was also implemented as a baseline
method. Figs. 2b, 2c, and 2d show the tuning curves for
all three data sets. For inverse GRBF, we simply computed

the inverse [11] of the GRBF network fitted to generate the
on-manifold tuning samples for the proposed method.
Fig. 5b shows examples of the on-manifold tuning set

generated for the teapots data set. They appear to smoothly
interpolate; hence, it can be deduced that the embedding-
to-input-space mapping performs well, even for very high

dimensional inputs.
For MLP networks, the number of hidden layer neurons

was set to n, where n is the number of training vectors,
again to make MLP more comparable to our method, which

CHIN AND SUTER: OUT-OF-SAMPLE EXTRAPOLATION OF LEARNED MANIFOLDS 1553

Fig. 5. (a) Blue dots represent the embedding, whereas red dots
correspond to exemplar images. (b) The top and bottom rows show
successive images of the manifold, whereas the middle row shows the
GRBF interpolation between them. (a) MVU embedding of the Teapots
dataset. (b) Samples of the on-manifold tuning set.

Fig. 6. For the face data set, the color progression depicts continuous
frames of the head movement. For the soft-toy data set, each color
represents a specific latitude on the view hemisphere. (a) MVU
embedding of the face data set. (b) MVU embedding of the soft-toy
data set (in two views).

6. Available at http://www.seas.upenn.edu/~jhham/papers/face.
mat.gz.

places n Gaussian basis functions on the training data. The

tuning set created to tune data-dependent kernels for the

three data sets was used as a validation set during MLP

training. Figs. 7a and 7b depict the training profiles for the

face and soft-toy data sets for 10,000 epochs, which

consumed about 21 and 17 hours to produce (the profile

for the teapots data set looks similar). The validation errors

are far higher than the minimum tuning error of the data-

dependent kernels (note the scale of the errors); that is, even

after considerable training effort, our MLP networks are

only partially trained. Indeed, it is evident that cross

validating to choose the number of optimal hidden neurons

is practically infeasible. The required computational effort

stands in stark contrast against the proposed method,
where solving (10) is in the order of tens of minutes.

For testing, the error metrics that can be used are
dependent on the availability of ground truths of the three
data sets. The following metrics were defined and applied in
our tests:

1. For teapots, each training and testing image is labeled
with a value ½1; 2; � � � ; 400� that corresponds to a
specific viewpoint. A testing image is extrapolated,
its nearest neighbor in the embedding space (that is,
one of the embedded training images) is sought, and
the difference of the two label values is used as an
error measurement. Note that the periodicity of the
manifold has to be considered; for example, labels 3
and 398 have a distance of 5.

2. For faces, the euclidean distance between the

extrapolated coordinate of a testing image to the

coordinate of the embedding of the corresponding
training image is used as an error measure.

Although this is not necessarily a good performance

measure (as the following results indicate), we are
hampered by the unavailability of ground truth

headpose coordinates. Nonetheless, visually com-

paring the results is still useful and interesting.
3. For soft toy, the nearest neighbor in the embedding

space (that is, one of the embedded training images)

of an extrapolated testing image is first obtained.

The sum-of-squared-differences of the longitudinal
and latitudinal values, with consideration to peri-

odicity, is used as an error metric. This corresponds

to the geodesic distance along the manifold surface.
Note that 0 error is not possible due to the disjointed

training and testing set.

Fig. 8 illustrates several results of the nearest neighbor

matching in the embedding space. In general, the proposed

method and k-NN produced the best results, with visually

closer matches than the other methods. PCA occasionally

gave dramatically erroneous results, which indicates that

locally complex structures exist on the three image manifolds

that cannot be modeled well with only a few linear principal

components. It also seems that extrapolation via inverse

GRBF does not perform well, even though the embedding-to-

input-space mapping achieved good interpolations. None-

theless, the soft-toy data set presents an exception to this

result among the data sets considered, which is probably

because it better satisfies the “linear approximation” condi-

tion [11] of the inverse GRBF method. Note that inverse GRBF

produced sufficiently accurate manifold extrapolation for

pose estimation by using the silhouettes in [11]. For the MLP

networks, since they are only partially trained, the matching

results are expectedly unsatisfactory.
Fig. 7c summarizes the performance by using the error

metrics previously described of all the methods implemen-

ted. The errors were first normalized by respectively

dividing against the upper bound of achievable error of

each data set. The proposed technique produced the lowest

average results for the teapots and soft-toy data sets, with

k-NN following closely. For the face data set, k-NN gave the

1554 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 9, SEPTEMBER 2008

Fig. 7. (a) and (b) MLP training profiles for the face and soft-toy data
sets for 10,000 epochs (the profile for the teapots data set looks similar
and is omitted to conserve space). The network weights were updated
using Netlab’s [16] SCG implementation. (c) Summary of the manifold
extrapolation performance of five methods on three data sets. The
errors are normalized for better comparison. (a) Face data set, over

 21 hours. (b) Soft-toy data set, over
 17 hours. (c) Manifold
extrapolation performance.

best results in terms of the error metric employed, whereas

PCA is slightly better than the proposed method. None-

theless, for the face data set, as shown in Fig. 8, image

matching by the proposed method and k-NN is much better

than PCA’s; that is, note the clearly wrong PCA matchings

in columns 4, 5, 6, 9, 10, and 11 of faces. We also emphasize

that one should not view the application of these experi-

ments as the pose estimation of objects and seek to compare

against specialized pose estimation methods, for example,

[17]. Our objective is manifold extrapolation, and it just so

happened that the manifolds that we have considered are

populated from images of objects in different viewpoints.

4 CONCLUSION

In this paper, we have proposed a novel method for

extrapolating manifolds learned via MVU to novel out-of-

sample data. Central to our approach is the Nyström formula

for approximating eigenfunctions from finite samples, which

has been observed in the literature to be equivalent to the

KPCA projection formula. The essence of our solution lies in

tuning data-dependent kernel functions derived from

Gaussian basis functions by using artificially generated

on-manifold and off-manifold samples. In conjunction with

the Nyström formula, the tuned kernel function can then be

freely applied to unseen before data. We have demonstrated

CHIN AND SUTER: OUT-OF-SAMPLE EXTRAPOLATION OF LEARNED MANIFOLDS 1555

Fig. 8. Cleaning corrupted images. For each block, row 1 shows the testing images, whereas rows 2, 3, 4, 5, and 6 show the closest matching image

respectively returned by the proposed method, k-NN, PCA, MLP, and inverse GRBF.

the effectiveness of our proposed method through extensive

experiments on synthetic and real data.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
helpful comments.

REFERENCES

[1] C. Burges, “Geometric Methods for Feature Extraction and
Dimensional Reduction,” Data Mining and Knowledge Discovery
Handbook: A Complete Guide for Practitioners and Researchers,
L. Rokach and O. Maimon, eds. Kluwer Academic Publishers,
2005.

[2] L. Saul, K. Weinberger, F. Sha, J. Ham, and D. Lee, “Spectral
Methods for Dimensionality Reduction,” Semisupervised Learning,
O. Chapelle, B. Schölkopf, and A. Zien, eds. MIT Press, 2006.

[3] K. Weinberger and L. Saul, “Unsupervised Learning of Image
Manifolds by Semidefinite Programming,” Int’l J. Computer Vision,
vol. 70, no. 1, pp. 77-90, 2006.

[4] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux,
and M. Ouimet, “Out-of-Sample Extensions for LLE, Isomap,
MDS, Eigenmaps, and Spectral Clustering,” Proc. Advances in
Neural Information Processing Systems, 2003.

[5] Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent,
and M. Ouimet, “Learning Eigenfunctions Links Spectral Embed-
ding and Kernel PCA,” Neural Computation, vol. 16, no. 10,
pp. 2197-2219, 2004.

[6] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear Component
Analysis as a Kernel Eigenvalue Problem,” Neural Computation,
vol. 10, pp. 1299-1319, 1998.

[7] V. de Silva and J. Tenenbaum, “Global versus Local Methods in
Nonlinear Dimensionality Reduction,” Proc. Advances in Neural
Information Processing Systems, pp. 705-712, 2003.

[8] K. Weinberger, B. Packer, and L. Saul, “Nonlinear Dimensionality
Reduction by Semidefinite Programming and Kernel Matrix
Factorization,” Proc. 10th Int’l Workshop Artificial Intelligence and
Statistics (AISTATS ’05), 2005.

[9] S. Vishwanathan, K. Borgwardt, O. Guttman, and A. Smola,
“Kernel Extrapolation,” Neurocomputing, no. 69, pp. 721-729, 2006.

[10] H. Gong, C. Pan, Q. Yang, H. Lu, and S. Ma, “Neural Network
Modeling of Spectral Embedding,” Proc. 17th British Machine
Vision Conf. (BMVC ’06), 2006.

[11] A. Elgammal and C.-S. Lee, “Inferring 3D Body Pose from
Silhouettes Using Activity Manifold Learning,” Proc. IEEE Conf.
Computer Vision and Pattern Recognition (CVPR ’04), vol. 2, pp. 681-
688, 2004.

[12] L.K. Saul and S.T. Roweis, “Think Globally, Fit Locally: Unsuper-
vised Learning of Low-Dimensional Manifolds,” J. Machine Learn-
ing Research, vol. 4, pp. 119-155, 2003.

[13] C. Baker, The Numerical Treatment of Integral Equations. Clarendon
Press, 1977.

[14] C. Williams and M. Seeger, “Using the Nyström Method to Speed
Up Kernel Machines,” Proc. Advances in Neural Information
Processing Systems, pp. 682-688, 2001.

[15] A. Schwaighofer, V. Tresp, and K. Yu, “Learning Gaussian
Process Kernels via Hierarchical Bayes,” Proc. Advances in Neural
Information Processing Systems, 2005.

[16] I.T. Nabney, NETLAB: Algorithms for Pattern Recognition. Springer,
2004.

[17] G. Peters, “Efficient Pose Estimation Using View-Based Object
Representations,” Machine Vision and Applications, vol. 16, no. 1,
pp. 59-63, 2004.

Tat-Jun Chin received the BEng degree in
mechatronics engineering from the Universiti
Teknologi Malaysia (UTM) in 2003 and the PhD
degree from the Department of Electrical and
Computer Systems Engineering (ECSE), Mon-
ash University, Victoria, Australia, in 2007. He is
currently a research fellow in the Institute for
Infocomm Research ðI2RÞ, Agency for Science,
Technology and Research ðA�STARÞ, Singa-
pore. His research interests include computer

vision and machine learning.

David Suter received the BSc degree in applied
mathematics and physics from the Flinders
University of South Australia in 1977 and the
PhD degree in computer vision from La Trobe
University in 1991. He is a professor in the
Department of Electrical and Computer Systems
Engineering (ECSE), Monash University. He
was a general cochair for several conferences.
He currently serves on the editorial boards of the
International Journal of Computer Vision and the

International Journal of Image and Graphics. His main research interest
is motion estimation from images and visual reconstruction. He is a
senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1556 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 9, SEPTEMBER 2008

